

Outline of talk

- Purpose of model
- Components of model
- Sources of information
- Process of modeling: calibration,
 validation, sensitivity analysis, application
- Preliminary results to date

1/26/05

VMI Phase I GW Model

Purpose of model

- Estimate overall water balance for island
- Refine estimates (guesses) of:
 - Aquifer properties & stratigraphy
 - Groundwater elevations & flow directions
- Assess data gaps, anomalies, investigation needs (monitoring wells)
- Project impacts of water supply stresses

Overall: to test our understanding.

Model components

- Grid and setup
- Hydrostratigraphy, aquifer properties
- Boundary conditions ("BCs")
 - Wells ("pumping well" BCs)
 - Streams ("river" BCs)
 - Recharge (BC), including OSS
 - Springs ("drain" BCs)
 - Discharge to Puget Sound ("fixed head" BCs)

1/26/05

UW database cross-section tool

Aquifer properties

- Major unknown few pumping tests:
 - KCWD #19 -- Morgan Hill well (AGI '97): 8 ft/d in Qva
 - " " -- Gerrior well (AGI '97): ~22 ft/d in Q(A)c
 - " -- Well #2 (Carr '90): 51 ft/d in Q(B)c
 - Heights -- well #3 (Rongey '92): 33 ft/d in Qva
 - Maury Mutual -- well #1 (Carr '90) 23 ft/d in Q(B)c
- Also used specific capacity tests in drillers' logs (bailer, pump tests) – USGS, Ecology method
- Comparable data in other studies in Central Puget Sound glacial units (by USGS, PGG, etc.)

Boundary Condition (BC): Wells

- Group A wells -- purveyor reports / comp plan or Wash DoH (connections x daily rate) - note: not including springs or WD#19 river intake
- Group B wells Public Health database (parcel)
- Individual wells
 - Compile "improved parcels" & service areas (A, B)
 - Assign to PWSs up to number of connections
 - Remainder of parcels assumed on individual wells
- Depths of wells: DoH/PH databases, individual wells based on UW database
- Have not accounted for agricultural consumption

BC: Springs

- Flow out only
- No known
 compilation of all
 springs (or flows)
 to compare
- Locations from
 Garling et al.,
 Group A systems,
 Carr, ...
- Currently only from Qva

BC: Recharge

- Flow down from surface
- Estimated using USGS method (Bidlake & Payne)
- Updated from Stephanie
 Brown estimate using
 new UW geology
- Value at cell center
- Combined with OSS discharge

1/26/05

VMI Ph

BC: Puget Sound Discharge

- Groundwater flows to deep zones, springs under Puget Sound
- No data available
- Fixed-head boundary condition (required)
- No consideration (yet) of fresh/salt interface

1/26/05

VMI Phase I GW Model

Process of model operation

- Steady state solution long-term average recharge, year 2001 pumpage & levels
- Calibrate to target water levels
- No separate validation data yet available
- Many options for solving equations to get convergence
- Post processing of output
- Successive modification of parameters

Target Water Levels

Sources:

24 Volunteers

- 13 Ambient wells

5 Ecology

2001 water levels

1/26/05

Calibration results:

Water Balance (in/yr, entire VMI)

Water level contour output

- Current run
- Layer 3 (Qva),
 includes rivers and
 drains (springs)
- Direct output from model – can generate better contour map

Cross-section Graphical Output Observation wells Springs (drain) BCs Dried-out cells River BCs Discharge BCs Inactive cells **Potentiometric** contours 12000 raqoo 36000 2+000 заа́аа +1000

Completion of Calibration

"tweaking"

- Adjust Hydraulic Conductivities
 - By layer
 - Local adjustments?
- Compare with calibration water levels
 - "better fit" = tighter correlation & right-on average
- Check against spring locations & flows
- Check with river gaging data
- Compare against known flow directions

Initial Applications of model

- Sensitivity analyses
 - Change of fit / flow system with change of parameters
 - Analyze effects of variations in recharge, pumpage, hydraulic conductivity, ...
- Extrapolate effects on water balance

1/26/05

VMI Phase I GW Model